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Background

Leman’s model of Periodicity Pitch (2000)

Leman’s model has often been used to predict the sensory
component of harmonic expectation (e.g., Bigand et al., 2014;
Goldman et al., 2021). The model takes raw audio files as its
iInput and filters them through a simulation of the peripheral
auditory system to produce auditory nerve images and
periodicity-pitch images. The output of Leman’s model (Tonal
contextuality, hereafter TC), predicts the harmonic contrast
between two successive sonorities based solely on sensory
iInput (as opposed to abstract representations of harmony). This
model is a good candidate to predict the effect of timbre on the
sensory component of harmonic perception because the model
IS based on spectral analysis and considers fine-grained

spectro-temporal information to generate its output.

Aim
This study investigates the effect of timbre on Leman’s model of
Periodicity Pitch (2000).

Method

Stimuli

1250 two-chord stimuli

* Chord pitch structure: 50 two-chord combinations from
Bigand et al., (1996). Always a C chord followed by a maj,
min, dom/, or min/ chord. All possible root motions explored.

 Chord timbre: 25 instruments often used to play chords in
popular and classical music.

« Stimuli generation: mono versions of instrument pre-sets
from Logic Pro. IOl = 1500 ms, midi velocity = 75, and
general loudness of the instruments equalized using
pyloudnorm (Steinmetz & Reiss, 2021).

Analysis

« TC of the 1250 two-chord stimuli

* 165 timbral features for 1250 single chords used to create the
two-chord stimuli and 625 single pitches used to create the
chords (25 pitches x the 25 instruments).

Results

Spectral contrast in the range of 400-800 Hz was the timbral
variable with the strongest correlation with TC (r (25) = -.85,

p <.001). Octave-based spectral contrast roughly describes the
energy differences between narrow-band signals and broad-band
noise.
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--@-- Average TC for 50 chord combinations --@-- Average spectral contrast in 400-800Hz range for 50 chord combinations

Figure 1: TC and spectral contrast in the 400-800 Hz range for 25 instruments.
All values are averages of the 50 chord combinations. The range of the two
vertical axes in the plot was min-max normalized to facilitate comparison.

Chords sung with the vowel [a] and [i] had respectively one of the
lowest and highest average spectral contrast 400-800 Hz,
suggesting that formants can affect spectral contrast and TC.
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Figure 2: Comparison between Choir [a] and [i] in terms of TC, spectral
contrast 400-800 Hz, and formants 1 to 3. Values for the first two variables are
averages of the 50 chord combinations. Values for formants correspond to the
specific chord succession C-Bb7 as voiced by Bigand et al. (1996).
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